On geometric independency trees for points in the plane
نویسندگان
چکیده
منابع مشابه
Some results on geometric independency trees
A plane spanning tree is a tree drawn in the plane so that its edges are closed straight line segments and any two edges do not intersect internally, and no three of its vertices are collinear. In this paper, we present several results on a plane spanning tree such that the graph which is obtained from the tree by adding a line segment between any two end-vertices of the tree is self-intersecting.
متن کاملProperly Colored Geometric Matchings and 3-Trees Without Crossings on Multicolored Points in the Plane
Let X be a set of multicolored points in the plane such that no three points are collinear and each color appears on at most ⌈|X|/2⌉ points. We show the existence of a non-crossing properly colored geometric perfect matching on X (if |X| is even), and the existence of a non-crossing properly colored geometric spanning tree with maximum degree at most 3 on X. Moreover, we show the existence of a...
متن کاملMaximum Plane Trees in Multipartite Geometric Graphs
A geometric graph is a graph whose vertices are points in the plane and whose edges are straight-line segments between the points. A plane spanning tree in a geometric graph is a spanning tree that is non-crossing. Let R and B be two disjoint sets of points in the plane where the points of R are colored red and the points of B are colored blue, and let n = |R ∪ B|. A bichromatic plane spanning ...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملGeometric tree graphs of points in the plane
M. C. Hernando1, F. Hurtado1, A. M arquez2, M. Mora1, M. Noy1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2002
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(02)00264-9